II. GOAL - Getting the students doing the thinking in Mathematics \quad Transforming tasks strategy: From procedure to problem solving

Technique	Before	After	Reflection: Why and how?
Students identify the 'problem to solve' Present a provocation and ask students to determine the problem to solve.	This giant model koala is so big that it has a shop built inside of it. How many times taller is the koala than the little girl?	Look at the photo. What questions do you have? Sort your questions into mathematical and nonmathematical questions. Which mathematical question would you like to solve?	WHY would you... have students STOP, NOTICE, THINK, WONDER and share their wonderings about the image, in order to pose their own mathematical questions? So students personalise and actively participate in their learning by asking questions about the things they notice. HOW does this develop powerful/expert learners? Students exercise curiosity and develop their capacity to think logically and creatively.
Provide insufficient information at first Give a perplexing problem and slowly provide information as needed.	This bucket holds 10 litres when filled to the top. The dotted line shows the water level in the bucket. How much water do you think is in the bucket?	Approximately how much water do you think was poured over this man? What information do you need in order to find out? What else? Give clues or answers as appropriate in response to the questions asked.	WHY would you... give students the opportunity to identify what they need to know to solve the problem? So students use reasoning to question and construct their own strategy. HOW does this develop powerful/expert learners? Students become numerate, as they are challenged and supported to develop skills in identifying information needed to solve a problem.
Don't give any of the steps - at first Provide prompts and support to scaffold the learning as needed.	A movie ticket for one adult costs $\$ 12$. A movie ticket for one child is three quarters of the cost for an adult. a. What's the cost for one child? b. What's the cost for four children? c. What's the cost for a family of two adults and four children?	A movie ticket for 1 adult costs $\$ 12$. A movie ticket for a child is three quarters of the cost for an adult. What's the cost for a family of two adults and four children? Source: NAPLAN question.	WHY would you... remove structured 'paved out' procedures and have students develop their own strategies for solving a maths problem? So students identify the information required, and strategically organise the steps they need to take to solve the problem. How does this develop powerful/expert learners? Students become more resourceful and independent when they 'know what to try, even when they don't know what to do'.
Include some irrelevant information Give additional information that is not required to do the task.	What is the value of: $500+60+4$	Which of these is worth 564? Tick all the correct boxes. $\begin{aligned} & 5+6+4 \\ & 50+60+40 \\ & 500+40+6 \\ & 500+60+4 \end{aligned}$	WHY would you... have students choose possible answers from a range of choices, including some common misconceptions? So students consider, compare and evaluate possiblities from a range of options, to determine which ones would 'be worth 564'. HOW does this develop powerful/expert learners? So students discern between relevant and irrelevant information, and reveal the depth of their understanding of calculating the areas of triangles.

