

GOAL – Getting the students doing the thinking in Mathematics

Transforming tasks strategy: From procedure to problem solving

Technique	Before	After	Reflection: Why and
Students identify the 'problem to solve' Present a provocation and ask students to determine the problem to solve.	This giant model koala is so big that it has a shop built inside of it. How many times taller is the koala than the little girl?	Look at the photo. What questions do you have? Sort your questions into mathematical and non- mathematical questions. Which mathematical question would you like to solve?	 WHY would you have their wonderings about questions? So students personalise about the things they not HOW does this develop Students exercise curios creatively.
Provide insufficient information at first Give a perplexing problem and slowly provide information as needed.	This bucket holds 10 litres when filled to the top. The dotted line shows the water level in the bucket. How much water do you think is in the bucket?	Approximately how much water do you think was poured over this man? What information do you need in order to find out? What else? Give clues or answers as appropriate in response to the questions asked.	WHY would you give know to solve the prob So students use reasonin HOW does this develop Students become numer in identifying information
Don't give any of the steps - at first Provide prompts and support to scaffold the learning as needed.	 A movie ticket for one adult costs \$12. A movie ticket for one child is three quarters of the cost for an adult. a. What's the cost for one child? b. What's the cost for four children? c. What's the cost for a family of two adults and four children? 	A movie ticket for 1 adult costs \$12. A movie ticket for a child is three quarters of the cost for an adult. What's the cost for a family of two adults and four children? Source: NAPLAN question.	WHY would you remains students develop their So students identify the i they need to take to solv How does this develop Students become more neven when they don't kn
Include some irrelevant information Give additional information that is not required to do the task.	What is the value of: 500 + 60 + 4	Which of these is worth 564? Tick all the correct boxes. $5 + 6 + 4$ \square $50 + 60 + 40$ \square $500 + 40 + 6$ \square $500 + 60 + 4$ \square	WHY would you have choices, including som So students consider, co determine which ones we HOW does this develop So students discern betw depth of their understand

d how?

e students STOP, NOTICE, THINK, WONDER and share the image, in order to pose their own mathematical

and actively participate in their learning by asking questions tice.

p powerful/expert learners?

ity and develop their capacity to think logically and

students the opportunity to identify what they need to lem?

ng to question and construct their own strategy.

p powerful/expert learners?

rate, as they are challenged and supported to develop skills needed to solve a problem.

ove structured 'paved out' procedures and have own strategies for solving a maths problem?

information required, and strategically organise the steps ve the problem.

powerful/expert learners?

resourceful and independent when they 'know what to try, now what to do'.

e students choose possible answers from a range of ne common misconceptions?

ompare and evaluate possiblities from a range of options, to ould 'be worth 564'.

p powerful/expert learners?

ween relevant and irrelevant information, and reveal the ding of calculating the areas of triangles.

GOAL – Getting the students doing the thinking in Mathematics

Transforming tasks strategy: From procedure to problem solving

Technique	Before	After	Reflection: Why and ho
Students identify the 'problem to solve' Present a provocation and ask students to determine the problem to solve.	My four-wheel drive car is 240 cms wide. My city car is 165 cms wide. Express the ratio of the width of the four-wheel drive car to the city car.	Look at the photograph. What questions come to mind? Sort your questions into mathematical and non- mathematical questions. Which mathematical question would you like to solve?	WHY would you have stud wonderings about the image So students personalise and a about the things they notice. HOW does this develop pow Students exercise curiosity an
Provide insufficient information at first Give a perplexing problem and slowly provide information as needed.	In the year 2000, the London Eye, standing at 135m tall, became the world's tallest Ferris Wheel. The radius of the wheel is 60m. It travels at an average speed of 0.3m/s. Calculate: a. The diameter of the wheel b. The circumference of the wheel c. The time taken for one revolution of the wheel.	In the year 2000 the London Eye became the world's tallest Ferris Wheel. Approximately how long do you think a journey on the London Eye might take? Convince me/someone who thinks differently to you. What do you need to know to be sure of your accuracy?	WHY would you give stud know to solve the problem? So students use reasoning to HOW does this develop pow Students become numerate, a identifying information needed
Don't give any of the steps - at first Provide prompts and support to scaffold the learning as needed.	This design is drawn inside a regular hexagon. Calculate the marked angles.	This design is drawn inside a regular hexagon. What is the size of the angle marked a? Source: NAPLAN question.	WHY would you remove s develop their own strategies regular hexagon? So students identify the inform need to take to solve the prob How does this develop pow Students become more resour when they don't know what to
Include some irrelevant information Give additional information that is not required to do the task.	Calculate the area of the triangle.	Calculate the area of the triangle.	WHY would you have stud irrelevant information about So students critically consider of using all the information tha The additional measurement of necessary when calculating the the triangle being a right angle HOW does this develop pow So students discern between their understanding of place v

w?

dents STOP, NOTICE, THINK, WONDER and share their e, in order to pose their own mathematical questions? actively participate in their learning by asking questions

verful/expert learners?

nd develop their capacity to think logically and creatively.

ents the opportunity to identify what they need to

guestion and construct their own strategy.

verful/expert learners?

as they are challenged and supported to develop skills in to solve a problem.

structured 'paved out' procedures and have students s for solving a maths problem about the angles of a

nation required, and strategically organise the steps they lem.

verful/expert learners?

urceful and independent when they 'know what to try, even o do'.

dents calculate the area of a triangle, and include the length of a side?

information, rather than engaging in a routine procedure at has been provided.

challenges the student to consider which dimensions are he area of a triangle and reveals false assumptions about ed triangle.

verful/expert learners?

relevant and irrelevant information to reveal the depth of alue.